p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.73(C2×C4), C22⋊C8⋊43C22, (C2×C8).389C23, (C2×C4).629C24, (C22×C8)⋊45C22, (C22×D4).34C4, C4.178(C22×D4), (C22×C4).413D4, (C22×Q8).27C4, C24.4C4⋊30C2, C2.6(Q8○M4(2)), C23.96(C22×C4), C23.86(C22⋊C4), (C22×M4(2))⋊15C2, (C2×M4(2))⋊64C22, (C23×C4).506C22, C22.159(C23×C4), (C22×C4).1493C23, (C2×C4○D4).22C4, (C2×C4).839(C2×D4), C4.67(C2×C22⋊C4), (C2×D4).219(C2×C4), (C2×Q8).198(C2×C4), (C22×C8)⋊C2⋊26C2, (C22×C4).319(C2×C4), (C2×C4).240(C22×C4), (C22×C4○D4).14C2, C2.22(C22×C22⋊C4), C22.18(C2×C22⋊C4), (C2×C4).155(C22⋊C4), (C2×C4○D4).268C22, SmallGroup(128,1611)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 636 in 382 conjugacy classes, 172 normal (14 characteristic)
C1, C2, C2 [×2], C2 [×10], C4 [×8], C4 [×4], C22, C22 [×6], C22 [×30], C8 [×8], C2×C4 [×2], C2×C4 [×30], C2×C4 [×20], D4 [×24], Q8 [×8], C23, C23 [×10], C23 [×10], C2×C8 [×8], C2×C8 [×8], M4(2) [×16], C22×C4 [×2], C22×C4 [×22], C22×C4 [×8], C2×D4 [×12], C2×D4 [×12], C2×Q8 [×4], C2×Q8 [×4], C4○D4 [×32], C24, C24 [×2], C22⋊C8 [×16], C22×C8 [×4], C2×M4(2) [×8], C2×M4(2) [×8], C23×C4, C23×C4 [×2], C22×D4, C22×D4 [×2], C22×Q8, C2×C4○D4 [×8], C2×C4○D4 [×8], C24.4C4 [×4], (C22×C8)⋊C2 [×8], C22×M4(2) [×2], C22×C4○D4, C24.73(C2×C4)
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×8], C23 [×15], C22⋊C4 [×16], C22×C4 [×14], C2×D4 [×12], C24, C2×C22⋊C4 [×12], C23×C4, C22×D4 [×2], C22×C22⋊C4, Q8○M4(2) [×2], C24.73(C2×C4)
Generators and relations
G = < a,b,c,d,e,f | a2=b2=c2=d2=e2=1, f4=d, ab=ba, faf-1=ac=ca, eae=ad=da, bc=cb, fbf-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, ef=fe >
(1 16)(2 18)(3 10)(4 20)(5 12)(6 22)(7 14)(8 24)(9 32)(11 26)(13 28)(15 30)(17 31)(19 25)(21 27)(23 29)
(1 31)(2 28)(3 25)(4 30)(5 27)(6 32)(7 29)(8 26)(9 22)(10 19)(11 24)(12 21)(13 18)(14 23)(15 20)(16 17)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 18)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 17)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 10)(2 11)(3 12)(4 13)(5 14)(6 15)(7 16)(8 9)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,16)(2,18)(3,10)(4,20)(5,12)(6,22)(7,14)(8,24)(9,32)(11,26)(13,28)(15,30)(17,31)(19,25)(21,27)(23,29), (1,31)(2,28)(3,25)(4,30)(5,27)(6,32)(7,29)(8,26)(9,22)(10,19)(11,24)(12,21)(13,18)(14,23)(15,20)(16,17), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (1,16)(2,18)(3,10)(4,20)(5,12)(6,22)(7,14)(8,24)(9,32)(11,26)(13,28)(15,30)(17,31)(19,25)(21,27)(23,29), (1,31)(2,28)(3,25)(4,30)(5,27)(6,32)(7,29)(8,26)(9,22)(10,19)(11,24)(12,21)(13,18)(14,23)(15,20)(16,17), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([(1,16),(2,18),(3,10),(4,20),(5,12),(6,22),(7,14),(8,24),(9,32),(11,26),(13,28),(15,30),(17,31),(19,25),(21,27),(23,29)], [(1,31),(2,28),(3,25),(4,30),(5,27),(6,32),(7,29),(8,26),(9,22),(10,19),(11,24),(12,21),(13,18),(14,23),(15,20),(16,17)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,18),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,17)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,10),(2,11),(3,12),(4,13),(5,14),(6,15),(7,16),(8,9),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)])
Matrix representation ►G ⊆ GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 13 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,13,0,0,0,0,4,0,0,0,0,0,0,0,0,13,0,0,0,0,4,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,1,0,0,0,0,0,0,1,0,0] >;
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 4K | 4L | 4M | 4N | 8A | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | Q8○M4(2) |
kernel | C24.73(C2×C4) | C24.4C4 | (C22×C8)⋊C2 | C22×M4(2) | C22×C4○D4 | C22×D4 | C22×Q8 | C2×C4○D4 | C22×C4 | C2 |
# reps | 1 | 4 | 8 | 2 | 1 | 6 | 2 | 8 | 8 | 4 |
In GAP, Magma, Sage, TeX
C_2^4._{73}(C_2\times C_4)
% in TeX
G:=Group("C2^4.73(C2xC4)");
// GroupNames label
G:=SmallGroup(128,1611);
// by ID
G=gap.SmallGroup(128,1611);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,723,2019,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^2=1,f^4=d,a*b=b*a,f*a*f^-1=a*c=c*a,e*a*e=a*d=d*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,e*f=f*e>;
// generators/relations